
Realistic Human Behaviour Simulation for
Quantitative Ambient Intelligence Studies

Fabio Veronese1, Andrea Masciadri1, Anna A. Trofimova1,
Matteo Matteucci1, and Fabio Salice1

1Department of Electronics, Information and Bioengineering - Politecnico di Milano -
Polo Regionale di Como, via Anzani 42, 22100, Como, ITALY

December 6, 2016

Abstract Smart Homes technologies development is oriented toward in-
telligent services for the dweller. Designing the Artificial Intelligence which
plays behind the scenes in a Smart Home requires large datasets for several
reasons: training machine learning algorithms, tuning parameters, system
testing and validation. Usually such tasks are carried-out on real-world data,
requiring long time and additional costs to be collected, checked and labeled.
Accelerating the development and limiting costs, a behaviour simulator can
digitally reproduce environments and behaviours of the dwellers, in controlled
conditions and in short time. This work presents a simulator capable of
generating or reproducing the routine of a person in terms of Activities of
Daily Living (ADLs). Moreover, the activity scheduling can be used to gener-
ate synthetic data from sensors deployed in a virtual environment. For the
ADL schedule generation, an innovative model based on the person status
(represented by needs) and habits is used, while two alternatives are proposed
to generate home automation data: an agent-based model (with determin-
istic behavioural pattern descriptions) and a stochastic one (modeling the
ambient response based on sample data activations distributions). The whole
simulation/emulation chain is evaluated comparing the characteristics of the
obtained data with a real world dataset. This comparison proves that syn-
thetic data respect the distributions of the corresponding real world dataset
ADLs and sensors activations.

1

1 Introduction

Currently, many research projects are addressed to the development of Artificial Intelli-
gence (AI) systems. They concern the process leading from Home Automation (HA) [1],
where appliances, lights, windows, shutters, heating system, etc. are automatic; to Smart
Homes [1], where thanks to sensors an intelligent software (i.e. Ambient Intelligence
- AmI) drives the environment automation; to Active and Assisted Living (formerly
Ambient Assisted Living – AAL) [2], where AmI is directed to the assistance of the
dweller. Usually, these projects need large amounts of data to train their AI, either to
build their knowledge or to obtain parameters and configurations. These requests are
usually addressed by building real world installations, test fields, pilot environments, or
exploiting third parties datasets in which one or more persons live in a sensorized (home)
environment. These solutions are viable, at the cost of volunteers recruiting campaigns,
money investments, long acquisition times or, in case they are recorded by third parties,
one has to find the right recording settings, meeting the needs of the intended AI design.

An alternative approach relies on the design of a simulator to generate synthetic data.
Advantages regard the reduction of times and costs, and the possibility to define in
detail the behaviour of the observed persons as well as the response of the environment.
Generating synthetic data means to take into account the complexity of the emulated
elements; in particular, it requires replicating the logic of spontaneous choice to perform
home ADLs, as well as their natural scheduling over the day.

In this work the simulation of HA data for Ambient Intelligence studies is approached
by splitting the task in two levels: the ADLs scheduling generation and the environmental
sensor data simulation. The rest of this work is organized as follows: presentation of the
state of the art for HA data collection and simulation, introduction of simulation models
for the ADL scheduling and two for HA data generation, quantitative experimental
results from data generation and simulation, conclusions and future works.

2 Previous Work

In recent years, the increase of computational power has enabled the development of a
great quantity of software able to simulate real-life aspects by modeling the behaviour
of the ecosystem actors and the environment response. In this section, the state of
art of digital simulators concerning the behaviour of a person in an indoor (domestic)
environment is discussed; in particular, the attention is devoted to software for domestic
environments emulation and agent-based simulators. The distinction between Agent
Based Modeling and Simulation (ABMS) and Smart Environment Simulators, even if
not particularly sharp, helps to identify the main approaches that can be retrieved in
previous works. The former tries to model the elements of the HA system and the users,
as independent agents communicating and interacting with each other based on their
relation. The latter, instead, focus on the detailed simulation of the ambient response
rather than modeling in details the human behaviour, letting the user decide what the
main agent should do.

2

2.1 Agent Based modeling and simulation

Agent-Based Modeling and Simulation (ABMS) is a modeling approach that has gained
attention over the last 15 years. This trend is evidenced, as mentioned in Macal et al. [3],
by the increasing number of publications and Agent-based software. ABMS is becoming
widespread due to the following factors:

• Modularity: Defining the behaviour of each agent makes it possible to simulate, as
a whole, more complex systems than with monolithic approaches. By splitting the
complexity over more agents, it is possible to produce more detailed and realistic
systems;

• Interdependency: ABMS makes it possible to model parts of the system as inde-
pendent agents. In this way it is easier to manage interdependencies within the
whole model as it happens with objects in object-oriented programming;

• Computational Power: Nowadays computational power is advancing rapidly per-
mitting the computation of large-scale microsimulation models which were not
plausible just a few years ago.

Unfortunately there is no universal agreement on the definition of agent in the context of
ABMS research. According to Bonabeau et al. [4], an agent is an independent component
within a simulation or a model. A stricter definition, given by Casti [5], states that the
behaviour of an element must be both independent and adaptive to be considered an
agent. In other words, an agent is an element that can learn from the environment and
dynamically change its behaviour with respect to the context. According to Jennings et
al. [6], the most important characteristic for an agent is autonomy in taking decisions.
Macal et al. [3], specify other characteristics an agent is required, such as the interaction
capability with both the environment and other agents; as a result, behaviour must
depend both on the state in which the agent is and on the context in which it is collocated.
Moreover, an agent bases its decisions on a feedback system, performing a continuous
comparison between the expected results of its actions and the environment status. To
let it decide what choice to take also a goal is needed.

In the literature, according to Macal et al. [7], it is possible to divide ABMS platforms
into two different families: General Tools and Specific Tools. A General Tool is an instru-
ment able to simulate agents behaviour, but it can also be used to code environmental
aspects. This broad group includes, to some extent, also the high level programming
languages such as Java, C++ or MATLAB. Indeed, by implementing rules it is possible
to realize both simple and complex systems. According to Macal et al. [7], General Tools
also include spreadsheets with macro programming, such as MS Excel, probably the
simplest approach to modeling. As a case study, it is possible to cite the work made
by Bower and Bunn [8]; in their work, Excel has been used as an ABMS tool to model
and simulate bilateral market mechanisms for electricity trading. On the other hand,
the use of MS Excel (as well as other General Tools) generally produces models with
limited agent diversity, restricted agent behaviours, and poor scalability compared to
other, specific, approaches. Specific Tools instead are purposefully programmed software

3

applications, devoted to the simulation of Smart Homes. In the following we will report
the state of the art situation about those software.
NetLogo [9], [10] is a free and open-source software under GPL license available

on Github which provides a programmable modeling environment for the simulation
of natural and social phenomena. It is particularly well suited for modeling complex
systems evolving over time. It is written mostly in Scala, a scalable Object-Oriented
language [11], while some parts are coded in Java. A classical example developed in
NetLogo is the Wolf-Sheep Predation model [12] [13]; in this model, two families of
agents, i.e., wolves and sheep, move randomly around the environment trying to survive,
sheep are eating grass and avoiding wolves who are hunting them. Even if NetLogo is a
powerful software able to scale with large amounts of agents, it reveals its limitations
when trying to implement complex models or to configure fine details in the simulation.

SWARM [14] is a software engine and a library for the multi-agent simulation of
complex systems. It was developed in 1994, at the Santa Fe Institute with a focus on
artificial life applications and studies about complexity; it is the first ABMS software with
hierarchical organization. A key aspect of this software is the conceptual division between
the model coding part and the testing part; in this way, conducting experiments on the
model does not need programming skills. SWARM includes also an important concept
of hierarchy in which each context, called swarm, can contain lower levels of swarms
which are integrated to the higher level. For all these reasons, SWARM is considered the
most powerful and flexible simulation platform. However, it has had a long life: it was
designed before Java had become a mature language. SWARM was coded in Objective-C,
and nowadays it shows some issues related to the lack of strong typing and problems
in data protection. Indeed, a malevolent user can monitor and control any simulation
object, no matter how protected it is, also directly from the graphical interface.
The Recursive Porous Agent Simulation Toolkit (Repast Symphony or

Repast S for short) [15] is a free, cross-platform and open-source agent-based mod-
eling toolkit. It was developed at the University of Chicago’s Social Science Research
Computing Lab with a focus on agent based simulations in social sciences. It is very
similar to Swarm, both in philosophy and appearance, providing some libraries for cre-
ating, running, displaying and collecting data from simulations. It was born as a Java
re-coding of Swarm, however, with respect to Swarm, Repast has a moderate learning
curve permitting even inexperienced users to build complex models. According to Grids
ABMS comparison [16], Repast has the greatest number of functionality among ABMS
packages, making it used and very popular.
MASON [17]: (Multi-Agent Simulator of Neighborhoods) is a free and open-source

fast discrete-event multiagent library coded in Java, able to handle both heavy custom-
purpose simulations and lightweight simulation tasks. MASON contains also a model
library and visualization tools in 2D and 3D. It was designed to serve as the basis for
a wide range of multi-agent simulation tasks, ranging from swarm robotics to machine
learning and social complexity environments. It was born as a branch of the Repast
project, but its popularity and documentation is not well recognized.
Siafu [18]: is a large-scale ABMS, written in Java and provided with a pleasant

GUI. It makes it possible to reproduce worlds and scenarios, designing a modular world

4

composed by three elements: agents, places and the context therein. It is worth noting
that agents are represented as state machines in which status changes are triggered
by context switches or by random factors. In particular, in complex contexts, simple
random factors obstruct the realization of complex human behaviours due to limitations
imposed by state machines. Moreover, Siafu makes it possible to gather context data for
each agent, simplifying statistical analysis. Some implemented examples are the living
simulation of a few inhabitants in a city scenario or in a smaller context such as the
working life in an office.

All the reported works have a common ground, reproducing a designed action/activity
in a virtual environment, permitting tests and evaluation of the Smart House response
in those situations. However in most of these software environments the physiological
variations in the every day routine quantities (e.g. the amount of time we spend to
consume meals, how many times we go to the toilet, how much time we spend in bed, etc.)
are not simulated, while in few they are simply randomly reproduced. The approach we
propose differs from the state of the art introducing an innovative scheduling algorithm
based on a model acting to balance needs and routine of the person.

2.2 Smart Environments Simulators

The other main approach to HA data simulation consists in designing the virtual rep-
resentation of a building, a dwelling or even a single room. These can be called Smart
Environment Simulators and their main aim is to reproduce the response of the virtual
AmI installed in the emulated environment. As already introduced, the main drawback
of this approach is the need for a user that triggers the virtual sensors activation or
guides an avatar or an agent in the sensorized space, producing the desired sensor activity.
Differently from ABMS, this category of simulators is more focused on the environment
than on the behaviour of the dweller living in it.
eHome [19]: is a project developed in Aachen, Germany. The research team has

implemented, via hardware, a set of advanced domotic services, such as “music-follow-
person” and “comfort-wake-up”. The first one permits to the dweller, who decides to
listen to music or podcasts inside an environment, to move freely among rooms without
turning the speakers on and off. The system monitors the person position adjusting the
volume and activating the speakers according to the room in which the user is located.
While the “comfort-wake-up” service computes the optimal wake-up time, considering
various static and dynamic factors, such as the first appointment of the day, usual
breakfast time, scheduled showers and traffic jams. As a result, eHome tunes home
appliances, such as the heating system, the morning alarm or the coffee machine for
breakfast to be ready at the right time. The installation of advanced domotic services
inside real homes requires an effort; therefore, the research team decided to test the
system with a software simulator, substantially reducing test-time and costs. eHome is
a point-and-click software for 2D indoor simulation: once started, the user can select a
person inside the environment and walk her/him around rooms interacting with objects
such as doors, chairs or appliances.
ISS (Interactive Smart Home Simulator): is a simulator developed at the Chon-

5

man National University [20], in Korea. It is able to reproduce a set of behaviours defined
through rules on devices installed inside a digital home. Also in this case, the simulator
has been designed to reduce the costs of a hardware implementation of the system. The
main goal of the project is user tasks automation. The system behaviour is based on a
set of if-then-else rules by which every object of the house can change its status. The user
can not directly interact with the system, a function called “Generate Event” randomly
extracts an action, such as “go to sleep”, for the inhabitant person, updating the status
of the involved devices.
TATUS: is an environmental 3D simulator developed at Trinity College, in Dublin.

This simulator is able to reproduce smart technological features, such as the identification
of people on room entrance and exit, or the recognition of behavioural patterns and
intentions of those living and working in the space, providing services to authorized
persons only. Generally speaking, it reproduces via software the context-awareness
capability of smart devices within rooms. Context awareness is the property of pervasive
computing systems to detect changes in the environment, and modify their response
accordingly. Also the realization of TATUS comes from the recurring problems involving
costs and logistics when implementing suitable test environments.

These simulators, on one hand are developed focusing on the virtual environment
characteristics rather than the agent’s, on the other, they provide a fixed behaviour of the
environment, designable by the user, but not trainable on other real world data nor with
probabilistic characterization. In this work we address also these two points, proposing
an environment model trainable and with probabilistic connotation.

3 Real World Datasets

The need for a simulator comes from the need to reduce costs related to real-life data
collection. Nevertheless, many research groups have collected, analyzed and published
some sets of HA data for different purposes.

As discussed by Alemdar et al. [21] two Smart Home dataset categories can be identified.
The first group is composed by systems with a high impact and influence on dwellers
life. They require the installation of more than one hundred sensors within a smart
environment, and, generally, these projects work on the human interaction with Smart
environment and objects but they do not provide any healthcare focus. Gator Tech
Smart house [22], Georgia Tech Aware home [23] and PlaceLab [24] are some
examples of this category.

The second group is composed of low impact systems. In these contexts few sensors are
used and they focus on human activity detection and health status monitoring. In Table
1 some data collection projects are summarized together with their collection modalities.
Some of the projects reported in Table 1 consider more than one dweller, indeed the
persons’ recognition is a very complex topic if the system uses only common sensors.
Experiments lasted from few hours to more than 12 months. This broad range of time
durations is due to many aspects; first of all budget limitation, indeed involving people
in these projects has high costs. The same holds true when considering the sensors

6

Table 1: Smart Home projects comparison

P
ro

je
c
t

M
u
lt
i
R
e
si
d
e
n
ts

D
u
ra

ti
o
n

S
e
n
so

rs

A
c
ti
v
it
ie
s

O
c
c
u
rr
e
n
c
e
s

ARAS Yes 2 months 20 27 1023-2177
CASAS Yes 12+ months 20-86 11-16 37-1513
Van Kastereen No 28 days 14 7 245
UvA No 2 months 14-21 10-16 200-344
Domus No 11,5 hours 78 0 (user feelings) NA
Mit No 2 weeks 77-84 13 176-278

number; even if systems have a low impact on dwellers life, they can be composed of a
high number of sensors. Generally speaking, their number depends on the size of the
smart environment and, if applicable, on the number of signals they want to recognize.

Simple sensors data need to be structured in complex clusters called activities. Even if
all these projects study human life, they consider different activities performed by dwellers;
a number between 7 and 27. Domus needs a special mention since the volunteers were
asked to autonomously define their activities, to analyze and categorize them offline. For
what concerns the number of occurrences of each activity, these are not proportional to
the number of sensors readings but to their annotations. ARAS (Activity Recognition
with Ambient Sensing) is a project for the automatic human ADLs recognition. The
experiments consisted in two houses instrumented with 20 sensors able to capture dweller’s
activities and movements. These have provided a ground truth annotation for 27 different
activities. In each house, ARAS staff has recorded a full month of information containing
sensor data and activity labels, resulting in a total of two months data. Datasets are
freely available on the project’s website [25].

The CASAS Smart Home is a project developed at the Washington State University to
provide an interdisciplinary research platform for intelligent environments. It is possible
to identify two main goals towards the development of this project. The first one is
the maximization of the user’s comfort recognizing, discovering and tracking the user’s
activities. The second one is to minimize costs, such as those related to maintenance and
energy saving. Datasets are freely available on the project’s website [26].

T. Van Kastereen [27], at the University of Amsterdam, has installed, inside the
real house of a 26 years old volunteer living alone, a set of 20 sensors. The aim of this
project was to annotate person ADLs starting from a collection of binary data. The
experiment has left 28 days, providing more than 2000 sensor events; obtained data have
been annotated using two different approaches: Conditional Random Fields and Hidden
Markov Model. Also in this case datasets are freely available on the project’s website [28].

7

Gathering real world data has been proven by the previous experiences to be a challenge.
Bureaucratic procedures, high hardware costs, very long data gathering time, high costs
of installation, system upgrade and removal, or possible faults are issues that should not
be underestimated. Moreover, the collected datasets present several drawbacks, and not
always they fit research purposes.

4 Human Motivation Modeling

Even if employing simulators can represent an answer to the lack of data, a common weak
point of the state of the art is that most of the available software rely on the user to decide
the activity performed by the agent in the virtual environment. The simulator hereby
presented, on the contrary, only leaves the user to configure few aggregate parameters
describing the agent attitude, while taking care of generating a realistic daily schedule of
human activities, based on such a defined profile.

The approach we propose is more suited for the description of human behaviour
especially for long periods thanks to its characteristics. Indeed it avoids the design of a
fixed ADL scheduling for the generation of all days, preferring to model a human-like
choice of each ADL along the day, and including also a random variability to represent
free will and modeling residuals. This makes the model more complete and mimicking
the human decision making process.

As introduced, SHARON (Simulator of Human Activities, ROutines and Needs) is
designed to reproduce the human behaviour in terms of ADL scheduling, by extracting,
from an input set of activities, the most suited, based on a score function. This function
is based on a two step modeling of the human motivation: the needs, making people
perform ADLs in order to maintain wellness, and the habits, making more probable for
someone to carry on certain ADLs at some specific times in the day, week, etc. Each
ADL is further composed of sub-tasks, that are executed by the simulated user who
interacts with the virtual environment sensors.

The set of needs N and activities configured in the present work are:

• Hunger, as the need for feeding;

• Tiredness, as the necessity to sleep;

• Stress, as the necessity to relax;

• Boredom, as the desire to have leisure time;

• Loneliness, as the need for social activities;

• Uncleanness, as the need to take care of the personal hygiene;

• Excretion, as the necessity to fulfill biological needs;

8

Moreover, it was necessary to consider also house related factors such as Low Stock
and Untidiness.

Firstly, let a be a generic activity in the set of ADLs, and a the one going on the
current moment t. Each need n ∈ N is associated with a status σn ∈ [0, 1], that is
assumed to change linearly as the simulation evolves. This relationship expresses the
dependency from a spontaneous growth rate γn of such need and the effect ζ(a) of the
ongoing activities on it as follows:

σn(t) = σn(t− 1) + γn + ζ(a) . (1)

The result is saturated, so to be bound inside the range [0, 1]. A need status affects the
ADL scoring through a linear function Na(·), representing the urge to perform a certain
activity a given the related person’s needs σn(t). This is implemented using a set of
weights wn,a ∈ [0, 1] as follows:

Na(σn(t)) ,
∑
n∈N

wn,a · σn(t) . (2)

However, this does not fully represent human activities motivation. Many activities are
performed in a habitual or conventional time of the day. Examples can be tea time, main
meals, or night time sleep. Such time dependency is modeled in this work by a function
θa(t) which assumes a value in [0, 1] for each simulation step in the day: the higher the
value, the more likely the activity in that time quantum. To avoid deterministic series of
events, the final likelihood Θa(t) is obtained through applying a probabilistic heuristic to
θa(t). For each simulation step a random variable u ≈ U{0, 1} is extracted:

Θa(t) =

{
θa(t) u > θa(t)

1 u ≤ θa(t)
(3)

The ADL most likely to be performed is the highest in a ranking identified by a metric
driven by the time and needs factors hereby described. Considering the activity a ∈ ADL
at time t, its score function Sa(t) is defined as:

Sa(t) = α(a) ·Na(σn(t)) ·Θa(t) ; (4)

where α(a) represents a factor discouraging activity change (i.e., 1 for the ongoing
activity a and 0.8 for all the others). The overall method for behaviour simulation can
be formalized as in Algorithm 1.

4.1 Parameters and Training

The proposed method for behaviour simulation is based on a set of parameters, defined
by the formerly explained equations.

ADL: the set of the performed/available activities;

N : the set of needs, related to the defined set of ADLs;

9

Algorithm 1 Overall ADL scheduling algorithm, extracting the activity a to be per-
formed

loop
Update time instant t
for each Need n in N do
σn(t) = σn(t− 1) + γn + ζ(a)

end for
for each ADL a do
if a is active then
α(a) = 1.0

else
α(a) = 0.8

end if
for each Need n in N do
Na(σn(t)) += w(n,a) · σn(t);

end for
Var rand = genRandom ∈ [0, 1]
if rand < θa(t) then

Θa(t) = 1.0
else

Θa(t) = θa(t)
end if
Sa(t) = α(a) ·

∑
n∈N Na(σn(t)) ·Θa(t)

end for
a = argmax

a
(Sa(t))

end loop

10

wn,a: representing the relations linking needs and activities;

γn: the spontaneous grow rate for each need;

ζ(a): the effect of each activity on specific needs;

θa(t): likelihood the user performs an ADL in a specific instant of the day.

Obtaining proper values for these parameters can be a challenging task. To perform
such task two methods requiring a very limited effort can be proposed:

Interview analysis: thanks to a brief interview with the subject it is possible
to gather a rough estimate of the usually performed ADLs, their time profile and
the needs they satisfy. The collected information has a limited validity, since it is
biased by the point of view of the interviewed person.

Real data set / diary analysis: having the possibility to collect information over
a longer period of time it is possible to get more reliable estimates. For instance
we could record data from a Smart Home installation (if available), or require the
dweller to precisely fill in a diary. Quantitative values for the simulation can be
extracted by analyzing the ADLs patterns in such data.

5 Modeling Home Automation Environment Response

One of the crucial aspects to make the simulator a powerful tool able to generate synthetic
data is the translation of the virtual inhabitant’s ADL into HA sensors activations. To
obtain this, we need to model the environment, the agent, and their interaction, so that
the generated data are a possible representation of the real-world data. In the following,
the authors describe the core component of the SHARON simulator, which transforms
the synthetic ADL scheduling into simulated HA data.

Two approaches have been adopted to describe the data generation: the first considers
as a central aspect the inhabitant behaviour, while the second is based on the stochastic
modeling of the data generation process. This double choice enables either the description
of a completely artificial environment and agent, or the extension and modification of
already existing datasets. In the following, the two are detailed and the resulting data
analyzed.

5.1 Deterministic Agent-based Activity Pattern (DAAP)

The most intuitive model able to represent the activation mechanism of HA sensors
along the execution of an ADL is based on the description of the inhabitant behaviour
according to the specific ADL. An ADL, indeed, can be decomposed in a sequence of
actions or tasks, each to be performed in a specific place of the house. Moreover, every
sensor is supposed to activate, with a certain probability, whenever the agent is inside a
specific area of the house. Thus, to represent an ADL, a pattern can be used which is
made of different positions the agent visits for a specific amount of time, performing a
given action.

11

5.1.1 Agent Modeling

The inhabitant is modeled as an agent, able to move around the house. No specific
interaction with objects or sensors is defined, the presence of the agent is the only factor
triggering changes in the environment. In particular the agent is characterized by a set
of coordinates xa = {x1, x2} that represent its position in the house, a walking speed sa,
quantifying the maximum distance between two subsequent positions. The path between
places in the house is designed knowing the location of walls, doors, and furniture on a
discrete map composed by tiles: the sequence of tiles connecting starting point to the
target point with the minimum overall distance becomes the agent trajectory.

5.1.2 Environment Modeling

The environment of the virtual house is described by two main characteristics. A generic
sensor s is described by the tuple Ds : {xs,As, Ps} representing respectively its position,
its triggering area, and its status distribution probability. Since most of the sensors
have binary status, in the following, they will be considered as active or inactive; the
activation of the sensor is triggered when the agent is in its activation area (xa ∈ As)
according to the outcome of a Bernoulli trial B(1, ps) = Ps outcome.

5.1.3 Pattern Modeling

Given that the human behaviour has a certain variability and that each high level ADL
might correspond to a different set of actions or tasks (e.g., cooking two different recipes,
or relaxing on the sofa or on the bed), several patterns of actions are associated to a single
activity. To model such variability each pattern is associated to a probability of being
chosen. As formerly mentioned the pattern P itself is a sequence of target positions xtk
for the agent and time durations θk, thus formally P : {pc;< xt1, θ1 >, . . . , < xtn, θn >}.
The actual pattern, as executed by the agent, implies that the agent first moves toward
the target position, then it remains in such location for the necessary time, moving
to the following target when the expected duration is passed. This enables not only
the activation of the ADL-specific sensors, but also the transitory triggering caused by
movements (e.g., motion sensors, doors opening, lights switching, etc.). Time lapses
can have both a precise duration or a percentage of the overall ADL time: thus, due
to the variability of the ADL duration, this requires an action to last at least a certain
amount of time to be completed. The overall data generation algorithm is formalized in
Algorithm 2.

5.1.4 Parameters Configuration

The agent based approach used to model the ADL execution allows the configuration of
the agent simulation parameters in an easy and intuitive manner in case the goal is the
generation of fully synthetic data. Indeed the characterization of the model using high
level concepts enables the design of high level parameters, whose tuning can be easily
done without referring to a precise set of data. As an example, to model the pattern of

12

Algorithm 2 Data generation using the Agent-based modeling

Initialize variables
loop

Update simulation time t
if t after the ending time of a then

Update a from scheduling
Get random pattern Pa based on pc

end if
if t after the current task ending τk then

Get new task k from Pa
Get new task location xk from Pa
τk = t+ θk from Pa

end if
if xa 6= xk then

Update xa on the path toward xk given sa
end if
for each sensor s ∈ S do
if xa ∈ As AND Ps then

Sensor s is active
else

Sensor s is inactive
end if

end for
end loop

13

the ADL “Watching TV” the first target location is the TV, which has to be switched
on, taking a very short and fixed amount of time, then the rest of the time, the agent
will be on the sofa. This description can be immediately translated in an execution
pattern, moreover, considering that in the 75% of the cases the agent sits on the sofa and
in the 25% it sits on the armchair, simply results in two similar patterns with different
probabilities pc.

5.2 Mixture of Markov Renewal Processes (MMRP)

The sensors behaviour response related to an activity execution can be also reproduced
in a stochastic manner, with a model trained on a real dataset. Through such a model, it
is possible to simulate the activations of binary sensors as the result of a set of stochastic
decisions based only on probability distributions computed on data.

5.2.1 Home Automation Data Representation

The HA data collected in a smart home at a given time instant can be defined with a
sensorset (SS): a vector of N variables representing the status of all the sensors installed
in the house. Formally, taking into account only binary sensors, a SS for every time
instant t can be denoted as:

ss(t) = {s1(t), . . . , sN (t)} , s(t) ∈ {0, 1} ; (5)

where 1 and 0 stand for active and inactive status respectively.
Analyzing a real-world dataset, the number of different SSs that appear is smaller than

all the possible sensors’ status combinations (2N). This is due to the limited happening
probability of unusual situations, for instance when the sensors are all active at the same
time, as result of sensor correlation in activities. Anyway, considering an analysis of
real-world data used for modeling with a sufficient extent, it can be assumed that all the
relevant SSs have been collected.

5.2.2 Activity Templates Modeling

The human behaviour cannot be completely described at the sensors activations level
only defining the ongoing ADL. Indeed, an activity can be performed in several ways,
which differ in terms of duration and order of the performed sub-tasks. For example, the
activity “Lunch” can be performed from the same actor as “Family lunch” which requires
hours of work and several tools or “Fast lunch” just opening the fridge. To comply with
this, it is advisable to introduce the concept of Activity Template. An Activity Template
τ(k,a) represents a specific way of performing an ADL a:

τ(k,a) ,
{
p(τ(k,a)|a), pinit(ss), SS, λ

}
; (6)

it is characterized by the probability of being executed given the ongoing ADL (a priori
probability) p(τ(k,a)|a), the probabilities of the sensorsets to be the initial state p̄(ssinit),

the SSs transition probability matrix SS, and the SSs change rate λ.

14

(a) (b)

Figure 1: Semi-Markov Chain representing HA sensorsets of a given Activity Template. Consid-
ering that the future SS duration does not depend in any way on the current SS, the
standard Semi-Markov Chain (a) can be simplified as (b).

In detail, the SS changes can be modeled by a stochastic random system with finite
state space E = {ss1, . . . , ssR}, where states represent sensorsets and can be described
by a Semi-Markov Model (SMM). Formally, if S = (Sn)n∈N is a chain which records
system states and T = (Tn)n∈N is the sequence of discrete time intervals that the system
spends in the states, the resulting discrete-time semi-Markov kernel [29] can be denoted
by:

qij(k) , p(Tn = k, Sn = ssj |Sn−1 = ssi) . (7)

By taking into account that the time spent in a state does not depend on the previous
states, the conditional independence assumption can be applied to modify the kernel as
follows (Fig.1):

qij(k) , p(Tn = k, Sn = ssj)p(Sn = ssj |Sn−1 = ssi) ; (8)

where p(Sn = ssj |Sn−1 = ssi) is a probability to be in state ssj if the previous state is
ssi and p(Tn = k, Sn = ssj) is the probability that the system spends k time units in
state ssj .

5.2.3 Sensorset Duration Modeling

The process of sensorsets change can be described with a sequence J of time points
in which the changes happen, such a sequence can be modeled as a Renewal Process
N(k)[29]:

N(k) =

∞∑
n=1

1(Jn ≤ k)→ N ∼ Pois(λ) ; (9)

i.e., N follows a Poisson distribution with rate λ. Furthermore, according to the relation
between J (instants in which a SS change happens) and T (waiting times) the distribution
of the latter is defined as exponential [30]:

p(Tn = k, Sn = ssj) = 1− e−λk . (10)

15

Figure 2: Graphical representation of the HA simulator model in three layers: the activity
template to be performed is chosen according to the current activity.

In Figure 2 it is shown the graphical representation of the proposed model of the HA
simulator divided in three layers, the first of which refers to the temporal sequence of
activities. Given that the current activity Qn is the activity a1, the activity template ri
to be performed is given by the a priori probability p(ri|a1), while the initial sensorset
ssi is given by the initial probability pinit(ssi). Finally, the transitions at the sensorset

level are given by the transition matrix SS and the probability to have a waiting time T .

5.2.4 Parameters Configuration

Given that the proposed stochastic model needs the estimation of activity templates a
priori probability p(ri), initial states probabilities pinit(ssi), SSs transition probability

matrix SS, and SSs change rate λ, it is necessary to extract them from a set of real-world
data. This procedure requires a HA dataset annotated with the ground-truth related to
the performed activities. Each contiguous portion of the dataset, characterized by the
same label, is called activity instance.

For every activity in the dataset it is possible, using the Jarvis-Patrick clustering
method, to group the related activity instances in homogeneous groups c(k,a), which
will be considered as activity templates. Jarvis-Patrick is a clustering method based on
similarity between neighborhood data units [31]. It can identify arbitrary shaped clusters,
that in case of no prior knowledge on shape, like in our case, becomes very import
advantage. Moreover, it does not require explicitly specify a desired number of clusters
and does not allow the absorption of small clusters by bigger ones. For such a method,

16

we used a similarity metric based on SSs transitions. Thus, let M be the transition
matrix, where M(i, j) is the number of transitions from ssi to ssj . The distance measure
between two activity instances Im and In can be defined as follows:

d(Im, In) =
∑
i,j

(Mm(i, j)−Mn(i, j))2. (11)

For each cluster the first parameter to be computed is the a priori probability of the
corresponding template. This can be derived by considering the number of instances in
such a cluster, over the total number of instances of such activity. Formally for a generic
activity instance Im:

p(τ(k,ai)) =
#(Im ∈ c(k,ai))∑
α=ai

#(Im ∈ c(j,α))
. (12)

Given that p̄init(ss) = {pinit(ss1), . . . , pinit(ssR)}, the initial probability of a sensorset
pinit(ssr), considering every instance I ∈ c(k,ai) related to a template τ(k,ai), can be
computed as:

pinit(ssr) =
#(t : ss(t) = ssr ∧ ss(t) ∈ I)

#(t : ss(t) ∈ I)
, (13)

Defining SSi,j as the transition probability of ssi with given ssj within every instance
I ∈ ck,ai can be computed as follows:

SSi,j =
#(t : ss(t− 1) = ssi ∧ ss(t) = ssj ∧ ss(t) ∈ I)∑R
q #(t : ss(t− 1) = ssi ∧ ss(t) = ssq ∧ ss(t) ∈ I)

. (14)

Finally, the rate λ needed to calculate the waiting times distribution for the Poisson
process N(t) [32] (Eq.9) is given by:

lim
t→∞

E[N(t)]

t
= λ, (15)

where E[·] is the expected value.

5.3 Some notes on the proposed models

Some considerations can be done analyzing the characteristics of the two models even
before producing any datum. The main difference between the proposed models is that
DAAP is meant to be designed by hand while MMRP requires a dataset to be trained on.

Indeed to find a proper DAAP configuration it is necessary to represent the semantic
of an ADL execution inside an activity pattern. This implies that the pattern can
be tuned, also with fine adjustments, directly by the designer and modified directly.
Moreover, the model needs also the design of the environment characteristics and the
sensors characterization: even if it represents a potential source of unrealistic information,
this still permits the creation of synthetic data without any real installation. Given
that the process is based on a semantic level, it should be difficult to reproduce real
data coming from a dataset. In such a case the data should be annotated with a great

17

amount of information, concerning the environment, the sensors, the implemented activity
characterization, etc.

Conversely, the MMRP model requires only the dataset with the annotation concerning
the ADL performed. This enables to extend the dataset with homogeneous (but never
identical) synthetic data, while neglecting information about the environment, the sensors,
and the semantic of Activity Templates. Clearly this forbids tuning the parameters by
hand, to modify them and in general to intervene on the configuration extracted from a
single homogeneous dataset. As a mild drawback, MMRP will consider also the noisy
portions of the dataset, potentially resulting in noisy data: even if realistic, this might
severely affect the quality of the synthetic data. Thus, whereas needed, it is advisable to
filter the data, inhibiting artifacts.

6 ADL Scheduling: Experimental Results

Before verifying the end-to-end results of the overall simulator, it is worthy to evaluate
the ADL scheduling generation alone. The further section will be instead devoted to
HA data simulation results and models comparison. To validate the effectiveness of
the simulator in reproducing humans’ behaviour, the model has been validated on the
data set provided by ARAS [21]. This dataset consists of a detailed description of the
activities performed by some dwellers during 30 days and on the data collected in their
house. Such data have been divided into two sets: training set (23 days) and validation
set (7 days). The training set was used to tune the system parameters and generate 300
simulated days. To reduce the complexity, ADLs were grouped semantically and reduced
from 27 to 17.

6.1 Validation Metrics

As discussed in previous sections, human habits are described as a distribution profile in
which, for each minute, a likelihood is provided for the system to perform a determined
ADL. The purpose of the validation is to rate similarities between the distributions
obtained during the simulations and the one extracted from the ARAS dataset. In the
literature it is possible to identify numerous distances between statistical distributions.
Many of them are not true metrics because they violate one or more of the three
requirements of a metric, that of non-negativity, symmetry and triangular inequality. To
the scope of this work, three different metrics have been employed to evaluate the results
of simulations. As it will be detailed in the following paragraphs, each of them describes
differently the distance between the statistical distributions of the activities: applying all
of them makes it possible to better characterize such a distance.

6.1.1 Bhattacharyya distance

In statistics, the Bhattacharyya distance ([33], [34]) is a measure of similarity between
two discrete probability distributions. It is related to the Bhattacharyya coefficient,
which is a statistical measure of the overlap of two sets of samples. This metric is widely

18

used in many fields, such as the extraction and the selection of features, image processing,
phone clustering and speech recognition. The Bhattacharyya distance (BD) is defined as:

BD =

1−

∑
i

√
{Pi ·Qi}√∑

j

Pj ·
∑
k

Qk

1
2

,

where Pi and Qi are the two normalized histograms expressed as unidimensional arrays.
BD varies between 0 (perfect match) and 1 (total mismatch); however tends to produce
high distances even when distributions are still quite similar.

6.1.2 Earth Mover Distance

The Earth Mover’s Distance (EMD) is a method to evaluate dissimilarity between two
distributions. Intuitively, given two distributions, one can be seen as a mass of earth
properly spread in space, the other as a set of holes in that same space. Then, the EMD
measures the least amount of work required to fill the holes with earth. Within this
reasoning, a unit of work corresponds to carrying a ground unit by a unit of distance
from the ground.

Assuming a discrete domain, EMD can be computed by solving an instance of the
transportation problem, applying the so-called Hungarian algorithm [35]. In particular,
representing distributions as one-dimensional array of discrete areas (called “bins”) the
EMD is computed by keeping track of how much “earth” needs to be transported between
adjacent bins. An interesting characteristic of EMD is that its cross-bin distance is not
affected by single bin differences.

EMD is often used in the computer vision field for pattern recognition and to com-
pare generic summaries or surrogates of data records called signatures. EMD, in its
multidimensional computation formulation, has not found widespread application outside
the computer vision community due to its prohibitive computational costs. However,
applying in the mono-dimensional formulation, its complexity is affordable and it can be
formalized as the following:

EMD0 = 0 (16)

EMDi+1 = (Ai+ EMDi)−Bi (17)

TotalDistance =

I∑
i=0

|EMDi| (18)

Where A and B represent the two discrete distributions, EMDi is the partial EMD and
“TotalDistance” is the final distance. EMD value is proportional to the distance between
profiles. The smaller its value, the better are the obtained results. Its range has a lower
bound 0 obtained when the two distribution are identical while it has no upper bound.
Indeed, it depends both by the cardinality and by the values of the two distribution.

19

Being not bound to an interval, it better represent the distance when distributions are
very dissimilar.

6.1.3 Kullback-Leibler divergence

Kullback-Liebler divergence is a special case of a broader class of divergences called
f-divergences. This metric is a non-symmetric measure of the difference between two
probability distributions P and Q. P represents the original distribution of data considered
as reference, while Q is an approximation of P. In detail, the Kullback-Leibler divergence
of P from Q, denoted as KLD(Q||P) measures the information loss obtained when
Q approximates P. To interpret results it is possible to consider produced values as
the entropy, the higher it is the broader are the differences. For discrete probability
distributions it is defined as:

KLD(Q||P) =

I∑
i=0

Qi · ln
Qi
Pi

. (19)

6.2 Results

The distributions of the activities along the days (computed through histograms with
1440 bins, one per minute), were extracted from the generated data as well as from
the training and validation datasets (Fig. 4,5). Then, Bhattacharyya Distance [36],
Earth Mover’s Distance [37] and Kullback-Leibler Divergence [38] between the simulation
results and the validation set were computed. As visible in Table 2 the performances of
the SHARON ADL simulation on the habitual actions are good, considering all the three
used metrics. However, some ADLs are showing very high results. This can be explained
computing the metrics also between the training and the validation sets: in such a way it
emerges that in those cases the validation can only be a limited representation of less
frequent ADLs since it does not comprise enough days. Indeed, it is possible to notice
that the simulator behaves as expected, since the metrics of the simulated data are very
close to the validation ones (Fig. 3).

Moreover, when comparing the profile of distribution histograms (along the day) of
an activity extracted from the simulated and ARAS real data, it comes clear that the
SHARON simulator is reproducing the routines with a good approximation. In the
reported histograms (Figures 4,5) the three sets of distributions are represented as follows:
the orange line represents the simulated profile, the blue one the training set, and the
gray one represents the test set.

6.3 Discussion

Wheres the state of the art simulators focus on the agent executing a set of codified and
designed actions in a virtual space without a particular interest in the human motivation
behind them, the methodology hereby proposed makes the motivation modeling the
central point. Indeed building the daily actions balancing between the satisfaction of
needs and the accordance to the personal habits, is a more realistic model compared

20

Table 2: BD, EMD, and KLD computed between SHARON Simulated data and Validation set
(S), and between Training set and Validation set (T). The lower the distances, the
better the dataset is represented; the smaller the difference between results S and T the
closer the simulation is to real data.

DATASET S T S T S T

METRIC BD EMD KLD

Breakfast 0.19 0.25 9.69 13.16 0.28 0.67

Lunch 0.50 0.47 22.54 24.59 4.67 4.87

Dinner 0.55 0.53 40.44 41.68 4.24 3.66

Snack 0.94 0.93 335.23 233.38 11.88 11.38

Sleeping 0.14 0.13 14.69 17.43 0.05 0.05

Watching TV 0.51 0.49 109.39 115.39 3.80 3.88

Shower 0.73 0.71 71.31 79.29 7.86 7.49

Toilet 0.80 0.78 104.63 138.55 8.91 9.14

Napping 0.60 0.74 254.12 419.23 7.21 8.70

Internet 0.42 0.42 38.68 43.67 2.56 2.60

Reading 0.85 0.85 177.24 140.83 10.07 9.95

Laundry 1.00 1.00 370.58 510.73 14.17 13.45

Phone 0.67 0.69 136.68 233.11 7.12 7.58

Music 1.00 1.00 314.33 427.16 13.57 13.63

Cleaning 1.00 1.00 490.8 473.72 14.62 13.99

Going Out 0.31 0.31 85.97 94.38 1.58 1.59

Other 0.82 0.79 124.38 127.76 9.34 9.13

21

Simulated data

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ra

in
in

g
 D

a
ta

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Breakfast

 Lunch

 Dinner

 Snack

 Sleeping

 Watching TV

 Shower
 Toilet Napping

 Internet

 Reading

 Laundry

 Conversation

 Going Out

 Music
 Cleaning

 Other

(a)

Simulated data

0 100 200 300 400 500

T
ra

in
in

g
 d

a
ta

0

50

100

150

200

250

300

350

400

450

500

 Breakfast

 Lunch

 Dinner

 Snack

 Sleeping

 Watching TV

 Shower

 Toilet

 Napping

 Internet

 Reading

 Laundry

 Conversation

 Going Out

 Music

 Cleaning

 Other

(b)

Figure 3: Graphical representation of Bhattacharyya (a) and Earth Mover Distance (b) for each
ADL

to the state of the art where usually the scheduling is deterministic with superimposed
random variations.

The model used in SHARON is moreover interesting since it adds a further level of
semantics in the choice of ADL scheduling, replicating with simplicity complex phenomena
(e.g., actions saturations, uniform distribution along a time window, etc.). Moreover, a
key point with respect to the state of the art is the possibility to train the agent behaviour
on real world data, obtaining an extension of the given dataset with any desired length.

Results on quantitative experiments prove that the behaviour replication is reliable. In
particular it is clear that even designing only a restricted set of parameters it is possible to
synthesize the actions distribution. Numeric evidences in Table 2 show that the activities
daily distributions have been successfully replicated in most of the cases, with limitations
where the actions instances in the dataset were only few.

The application of the proposed method can contribute significantly to the simulation
of realistic human domestic behaviour, bringing benefits to all the fields where it is
interesting to replicate inhabitant’s behaviour

7 HA Data Simulation: Experimental Evaluation

To complete the description of the simulator characteristics it is necessary to consider
an experimental evaluation of the home automation simulated data. To such an aim
the following section provides both qualitative and quantitative comparison of the two
proposed models, i.e. the agent based and the stochastic ones, when trying to (re)produce
the activity of home automation sensors generated by a specific ADL execution.

22

Breakfast ADL is quite well defined in the
later morning. The computed simulation
covers well this trend.

Lunch ADL is defined by two nearby peaks
during the first afternoon. The simulation
is positioned within the same lapse of time.

Dinner ADL has a regular shape. Indeed it
has only a peak centered in 1200 (8 P.M.).

Snack ADL is quite a random activity.
Indeed, excluding the sleeping period, the
dweller performs this ADL without show-
ing any predominant trend.

Sleeping ADL has a very regular shape.
Indeed, the training, the simulated and the
test sets overlap with high accuracy.

Watching TV ADL has 5 peaks distributed
during the day. The simulation follows
quite good all these peaks.

Shower ADL presents peaks distributed
over the day. Simulation overlaps quite
well the original set by enhancing broadest
peaks.

Excretion ADL, as expected, has a quite
random distribution. The simulation repli-
cates the uniform distribution along the
day, with almost no nightly episode.

Figure 4: ADL Time Distributions along the Day (1/2). Color codes are: orange synthetic, blue
training, and gray validation data.

23

Having Conversation ADL has a quite ran-
dom distribution during the day.

Napping ADL consists of four isolated
peaks, with very small magnitude.

Internet ADL is well spread during day
and a before going to sleep. Also in this
case the three sets overlap quite well.

Going Out ADL is characterized by a
broader contribute during the late morning
and during the afternoon: simulated data
show an enhanced peak in the morning.

Reading ADL is uniformly distributed dur-
ing the day excluding areas around 870 (2
P.M.).

Laundry ADL along the data set, is not
very well represented. Indeed, in 23 days
it has been performed rarely.

Music ADL is a quite rare activity. Indeed,
there are only few peaks distributed along
the whole day excluding the morning.

Cleaning ADL is characterized by a single
peak and it is quite rare on the analyzed
time period.

Figure 5: ADL Time Distributions along the Day(2/2). Color codes are: orange synthetic, blue
training, and gray validation data.

24

7.1 Choice of ADLs for Methods Comparison

To design the simulator evaluation it is important to consider that each ADL has different
characteristics in terms of repeatability and randomness in its execution. In particular,
some ADLs have a strong procedural connotation, while others are made of events
whose semantic is conserved even when their happening order changes. Since the two
proposed methods are exploiting complementary approaches to reproduce repeatability
and randomness, the choice of the ADLs to evaluate against was done to emphasize
those aspects: Cleaning (where the sequence is almost random), Lunch (where several
executions are different, but keeping an overall procedure), and Having Shower (where
the procedural connotation is strong).

7.2 Experimental Settings

The setup of the experimental comparison hereby described requires a good quality real
world dataset, annotated with ADLs, where a single person is monitored through a set
of HA sensors: as already reported, none of the available datasets complied with such
requirements off the shelf. Due to this, a filtered version of the ARAS dataset [21] was
employed, where only one person is considered, and the sensors activations generated by
the other person’s actions are neglected. Moreover, as already exploited for the ADL
simulation evaluation (Section 6), the reduced set of ADL labels was used.

Considering the filtered ARAS dataset as a starting point, the configuration of MMRP
is straightforward and it has been performed according to what has been described in
Section 5.2.3. To configure properly the DAAP generator instead, a set of patterns based
on the semantics of the ADLs executions is required as other characteristics of the data
which are not available. The DAAP configuration was thus designed extracting the
missing information through a classification-based procedure, pushing to the limit the
characteristics of the DAAP model, intended to generate data rather than reproduce
existing ones.

The two generated datasets were both obtained based on the filtered ARAS dataset
ADL scheduling, so that the durations and the frequency of the ADL instances in all the
data were the same. The comparison of the real and generated data was performed by
comparing the probability distribution of the sensors activity along the ADL duration
rescaled to 2048 time bins. Moreover, the distribution of the sensors uninterrupted active
intervals was computed as well.

7.2.1 Results

Considering the plotted distributions of the sensors (Fig. 6,7,8) it appears clearly that
the more random and stochastic activations of the original dataset are better reproduced
by the MMRP model. Conversely, as expected, the deterministic patterns of DAAP
permit to better emulate the execution of procedural ADLs.

Observing the Having Shower ADL sensors activity distributions in Fig. 6 it emerges
how the data generated with DAAP have a more evident procedural semantic: the
bathroom door is closed for the whole ADL duration, the shower cabinet is open at the

25

Time

0 500 1000 1500 2000

0

0.5

1

(a)

Duration [%]

0 20 40 60 80 100
0

0.5

1

ARAS

DAAP

MMRP

(b)

Time

0 500 1000 1500 2000

0

0.5

1

(c)

Duration [%]

0 20 40 60 80 100
0

0.5

1

ARAS

DAAP

MMRP

(d)

Figure 6: Having Shower sensors activations distributions: on the left activation probability
distribution along ADL duration, on the right sensors activation duration distribution
with respect to the activity execution time. The top row (a,b) refers to the bathroom
door sensor (active when closed), the bottom (c,d) to the shower cabinet door sensor
(active when open)

Time

0 500 1000 1500 2000

0

0.5

1

(a)

Duration [%]

0 20 40 60 80 100
0

0.5

1

ARAS

DAAP

MMRP

(b)

Time

0 500 1000 1500 2000

0

0.5

1

(c)

Duration [%]

0 20 40 60 80 100
0

0.5

1

ARAS

DAAP

MMRP

(d)

Figure 7: Lunch sensors activations distributions: on the left activation probability distribution
along ADL duration, on the right sensors activation duration distribution with respect
to the activity execution time. The top row (a,b) refers to the fridge door sensor
(active when open), the bottom (c,d) to the kitchen motion sensor

26

Time

0 500 1000 1500 2000

0

0.5

1

(a)

Duration [%]

0 20 40 60 80 100
0

0.5

1

ARAS

DAAP

MMRP

(b)

Time

0 500 1000 1500 2000

0

0.5

1

(c)

Duration [%]

0 20 40 60 80 100
0

0.5

1

ARAS

DAAP

MMRP

(d)

Time

0 500 1000 1500 2000

0

0.5

1

(e)

Duration [%]

0 20 40 60 80 100
0

0.5

1

ARAS

DAAP

MMRP

(f)

Figure 8: Cleaning sensors activations distributions: on the left activation probability distribution
along ADL duration, on the right sensors activation duration distribution with respect
to the activity execution time. The top row (a,b) refers to the hall motion sensor, the
central row (d,f) to the kitchen motion sensor, the bottom (e,f) to the fridge door
sensor (active when open)

27

Table 3: Quantitative results of the sensors activation distribution comparison. All the results
refer to BD of the involved sensor (where applicable) with respect to the ARAS dataset
distributions: smaller values represent closer distributions.

ADL Lunch Shower Cleaning

DATASET DAAP MMRP DAAP MMRP DAAP MMRP

Couch 0.34 0.06 - - 0.79 0.43

Chair 1 0.38 0.29 - - - -

Chair 2 0.25 0.47 - - 0.47 0.59

Fridge 0.66 0.41 - - 0.54 0.54

K. Drawer 0.74 0.60 - - - -

B. Door - - 0.16 0.11 - -

Shower - - 0.63 0.34 - -

Hall 0.83 0.89 - - 0.36 0.77

K. Mov. 0.22 0.20 - - 0.33 0.21

Tap - - - - 0.94 0.54

K. Temp. 0.18 0.19 - - - -

Average 0.45 0.39 0.40 0.22 0.57 0.51

beginning and at the end, when the person gets in and out of it. The MMRP generated
data conversely show better results in modeling the ADL Cleaning (Fig. 8) where the
randomness of the execution pattern has more relevance.

To give a quantitative evaluation of the generated data, it was also computed the
Bhattacharyya distances between the sensor activation distribution in the ARAS dataset
and both DAAP and MMRP for each of the involved sensor, as reported in Table 3. In
particular it is worth noting how the scores, in many occasions widely below 0.5, confirm
the adequate reproduction of the sensors activations in both cases. However, the different
approaches of the two models are visible also through the numeric results, where too
random or too deterministic activations are characterized by higher distance values.

7.3 Discussion

In the second part of this work we propose two approaches for the generation of HA
data. The DAAP method is similar to the state of the art, comprising the design of the
agent actions and environment response. Moreover, it is possible to configure different
implementations of the same ADL, among which the agent is going to chose, based on
a configurable ratio. This approach thus permits the creation of a virtual environment
from scratch, without any ground truth data or initial dataset.

However, in some settings it would be advisable to extend an existent HA dataset,

28

or to add some modification in the inhabitant behavior. MMRP makes it possible to
implement these features, exploiting a model that can be trained from real world data.

It is worthy to note that having both DAAP and MMRP makes it possible to generate
also hybrid datasets, where activities are either implemented by the deterministic agent
or through the stochastic approach.

8 Conclusions and Future Works

In this work we have presented a quantitative method to reproduce behaviours based
on two main factors: the temporal dependency (routines, habits and conventions) and
the personal needs evolution during the day. The relationship between the two is
mathematically described through a score function, representing the probability of an
action to be performed in that moment of the day. The resulting method is employed by
SHARON (Simulator of Human Activities, ROutines and Needs), which can be employed
to replicate humans ADLs routines. To validate the presented method the ARAS dataset
was used, considering 23 days as training and the latter 7 as validation. Based on the
training set, 300 days were simulated and their ADLs distribution was compared with
one extracted from validation set, using three different metrics. The obtained results
show a good match with the original distributions especially when looking at the more
regular ADLs.

Moreover, to complete SHARON functionality, two models are proposed to produce
synthetic Home Automation data: DAAP generates data based on the response of a
synthetic environment stimulated by the execution of ADL-patterns by an agent, MMRP
leverages an ad-hoc designed stochastic model to be trained on a dataset. Experimental
results show the diversity of the two approaches, confirming how DAAP is more suitable
to design manually semantic-based patters, while MMRP better describes and reproduces
randomness and stochastic executions.

SHARON and both the HA simulation engines are also available for download on the
ATG website: http:\\atg.deib.polimi.it

Concerning future developments, the research will focus on the modeling of multiple
simultaneous actions, to ensure realistic simulations, introducing the ADLs overlapping
(e.g. watch TV during a meal). Moreover, it would be interesting to consider multiple
users simulation: human behaviour is characterized also by the interaction among multiple
agents, thus it would generate particular ADLs patterns (e.g., alternation, cooperation,
exclusion, etc.). Allowing inhabitants to interact with other agents (other people or pets)
the simulator realism will increase considerably.

References

[1] Augusto JC, Callaghan V, Cook D, Kameas A, Satoh I. Intelligent environments: a
manifesto. Human-Centric Computing and Information Sciences. 2013;3(1):1–18.

29

[2] Fuchsberger V; ACM. Ambient assisted living: elderly people’s needs and how to
face them. 2008;p. 21–24.

[3] Macal CM, North MJ. Agent-based modeling and simulation. In: Winter simulation
conference. Winter Simulation Conference; 2009. p. 86–98.

[4] Camazine S, Deneubourg J, Franks N, Sneyd J, Theraulaz G. E. Bonabeau (2001)
Self-Organization in Biological Systems. Princeton University PressCamazineSelf-
organization in biological systems2001. 2001;.

[5] Casti J. Would-be worlds: how simulation is changing the world of science. New
York: Wiley; 1997.

[6] Jennings NR. On agent-based software engineering. Artificial intelligence.
2000;117(2):277–296.

[7] Macal CM, North MJ. Tutorial on agent-based modeling and simulation. In: Pro-
ceedings of the 37th conference on Winter simulation. Winter Simulation Conference;
2005. p. 2–15.

[8] Bower J, Bunn DW. Model based comparison of pool and bilateral markets for
electricity. The energy journal. 2000;p. 1–29.

[9] NetLogo source code; 2015. https://github.com/NetLogo/NetLogo.

[10] NetLogo Website; 2015. https://ccl.northwestern.edu/netlogo/.

[11] SCALA Homepage; 2015. http://www.scala-lang.org/.

[12] Lotka AJ. Analytical note on certain rhythmic relations in organic systems. Pro-
ceedings of the National Academy of Sciences. 1920;6(7):410–415.

[13] Volterra V. Variazioni e fluttuazioni del numero d’individui in specie animali
conviventi (Variations and fluctuations of the number of individuals in animal
species living together). C. Ferrari; 1927.

[14] SWARM project homepage; 2015. http://www.swarm.org.

[15] Repast Simphony project homepage; 2015. http://repast.sourceforge.net/.

[16] Grids ABMS Comparison; 2015. http://www.grids.ac.uk/Complex/ABMS/.

[17] Mason project website; 2015. http://cs.gmu.edu/∼eclab/projects/mason.

[18] Martin M, Nurmi P. A generic large scale simulator for ubiquitous computing.
In: Mobile and Ubiquitous Systems: Networking & Services, 2006 Third Annual
International Conference on. IEEE; 2006. p. 1–3.

[19] Armac I, Retkowitz D. Simulation of smart environments. In: Pervasive Services,
IEEE International Conference on. IEEE; 2007. p. 257–266.

30

[20] Van Nguyen T, Kim JG, Choi D. Iss: the interactive smart home simulator.
In: Advanced Communication Technology, 2009. ICACT 2009. 11th International
Conference on. vol. 3. IEEE; 2009. p. 1828–1833.

[21] Alemdar H, Ertan H, Incel OD, Ersoy C. ARAS human activity datasets in multiple
homes with multiple residents. In: Pervasive Computing Technologies for Healthcare
(PervasiveHealth), 2013 7th International Conference on. IEEE; 2013. p. 232–235.

[22] Helal S, Mann W, El-Zabadani H, King J, Kaddoura Y, Jansen E. The gator tech
smart house: A programmable pervasive space. Computer. 2005;38(3):50–60.

[23] Kientz JA, Patel SN, Jones B, Price E, Mynatt ED, Abowd GD. The georgia tech
aware home. In: CHI 08 extended abstracts on Human factors in computing systems.
ACM; 2008. p. 3675–3680.

[24] Intille SS, Larson K, Beaudin J, Nawyn J, Tapia EM, Kaushik P. A living laboratory
for the design and evaluation of ubiquitous computing technologies. In: CHI 05
extended abstracts on Human factors in computing systems. ACM; 2005. p. 1941–
1944.

[25] ARAS dataset project website; 2015. http://netlab.boun.edu.tr/WiSe/aras/.

[26] CASAS dataset website; 2015. http://ailab.wsu.edu/casas/datasets/ :.

[27] Van Kasteren T, Noulas A, Englebienne G, Kröse B. Accurate activity recognition in
a home setting. In: Proceedings of the 10th international conference on Ubiquitous
computing. ACM; 2008. p. 1–9.

[28] Tim van Kasteren Dataset website; 2015. https://sites.google.com/site/tim0306/datasets.

[29] Barbu VS, Limnios N. Semi-Markov chains and hidden semi-Markov models toward
applications: their use in reliability and DNA analysis. vol. 191. Springer Science &
Business Media; 2009.

[30] Grinstead CM, Snell JL. Introduction to probability. American Mathematical Soc.;
2012.

[31] Jarvis RA, Patrick EA. Clustering using a similarity measure based on shared near
neighbors. IEEE Transactions on Computers. 1973;100(11):1025–1034.

[32] Serfozo R. Basics of applied stochastic processes. Springer Science & Business Media;
2009.

[33] Wilson DH, Atkeson C. Simultaneous tracking and activity recognition (STAR)
using many anonymous, binary sensors. In: Pervasive computing. Springer; 2005. p.
62–79.

31

[34] Applegate D, Dasu T, Krishnan S, Urbanek S. Unsupervised clustering of multi-
dimensional distributions using earth mover distance. In: Proceedings of the 17th
ACM SIGKDD international conference on Knowledge discovery and data mining.
ACM; 2011. p. 636–644.

[35] Jonker R, Volgenant T. Improving the Hungarian assignment algorithm. Operations
Research Letters. 1986;5(4):171–175.

[36] Bhattacharyya A. On a measure of divergence between two multinomial populations.
Sankhyā: The Indian Journal of Statistics. 1946;p. 401–406.

[37] Hitchcock FL. The distribution of a product from several sources to numerous
localities. J Math Phys. 1941;20(2):224–230.

[38] Kullback S, Leibler RA. On information and sufficiency. The annals of mathematical
statistics. 1951;p. 79–86.

32

